Änderungen von Dokument Lösung Anwendung drei Verfahren
Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:23
Von Version 35.1
bearbeitet von Martin Rathgeb
am 2025/04/07 01:43
am 2025/04/07 01:43
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 15.1
bearbeitet von Martin Rathgeb
am 2025/04/07 00:16
am 2025/04/07 00:16
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -3,65 +3,72 @@ 3 3 4 4 **Lösungsschritte:** 5 5 (% class="abc" %) 6 -1. **Tabellarisches Verfahren (Teil 1).**6 +1. //Tabellarisches Verfahren (Teil 1).// 7 7 8 -//Wertetabelle I.// 9 - 8 +**Wertetabelle I (ganzzahlige Werte):** 10 10 (% class="border slim" %) 11 11 |{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}} 12 12 |{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|{{formula}}0{{/formula}} |{{formula}}3{{/formula}} 13 13 14 - //Interpretation.//15 -Die Funktion swertesindüberall nicht-negativ.Bei {{formula}}x = \pm 1{{/formula}} ergibtsich jeweils {{formula}}f(x)= 0{{/formula}}. Zwischen denNullstellen ist das Vorzeichenverhalten nochklar.13 +**Interpretation:** 14 +Die Funktion nimmt in diesen Punkten ausschließlich nicht-negative Werte an. Nur bei {{formula}}x = \pm 1{{/formula}} wird der Funktionswert null. Zwischen diesen Punkten bleibt das Verhalten unklar – wir sehen noch keine negativen Werte. Eine genauere Untersuchung ist nötig. 16 16 17 -2. **Tabellarisches Verfahren (Teil 2).**16 +2. //Tabellarisches Verfahren (Teil 2).// 18 18 19 - //Wertetabelle II.//18 +**Wertetabelle II (ergänzende Zwischenwerte):** 20 20 (% class="border slim" %) 21 21 |{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{,}5{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}-0{,}5{{/formula}}|{{formula}}0{{/formula}}|{{formula}}0{,}5{{/formula}}|{{formula}}1{{/formula}}|{{formula}}1{,}5{{/formula}}|{{formula}}2{{/formula}} 22 22 |{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}+2,...{{/formula}}|{{formula}}3{{/formula}}|{{formula}}+2,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}3{{/formula}} 23 23 24 - //Interpretation.//25 -i) Wirkennen nun nicht nur die beiden Nullstellen{{formula}}x=\pm 1{{/formula}},sondernwissenauch, dass es in den Intervallen{{formula}}]-2; -1,5[{{/formula}}und{{formula}}]+1,5; +2[{{/formula}}noch jeweilsmindestenseineNullstellevon{{formula}}f{{/formula}} gibt, denn bei beiden Intervallen haben die Funktionswertean den Rändern verschiedene Vorzeichen.26 -ii) Nach dem Fundamentalsatz derAlgebrahat diePolynomfunktion{{formula}}f{{/formula}}(vom Grad 4) unter Berücksichtigung derVielfachheiten nur bis zu 4 reelleNullstellen. Also sind alle Nullstellen von{{formula}}f{{/formula}}einfachmit {{formula}}-2<x_1<-1,5{{/formula}},{{formula}}x_2=-1{{/formula}},{{formula}}x_3=+1{{/formula}} und{{formula}}+1,5<x_4<2{{/formula}}.27 -iii) Alsogilt {{formula}}f(x)>0{{/formula}}füralle{{formula}}x<x_1{{/formula}},füralle {{formula}}x_2<x<x_3{{/formula}}undfür{{formula}}x>x_4{{/formula}}.23 +**Interpretation:** 24 +i) Also gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x{{/formula}} kleiner -2, für alle {{formula}}x{{/formula}} zwischen -1 und +1 und für alle {{formula}}x{{/formula}} größer +2. 25 +ii) Entsprechend gilt {{formula}}f(x)<0{{/formula}} für alle {{formula}}x{{/formula}} zwischen -1,5 und -1 und für alle {{formula}}x{{/formula}} zwischen +1 und +1,5. 26 +iii) Hingegen liegt in den Intervallen {{formula}}]-2; -1,5[{{/formula}} und {{formula}}]+1,5; +2[{{/formula}} jeweils mindestens eine Nullstelle von {{formula}}f{{/formula}}, denn bei beiden Intervallen haben die Funktionswerte an den Rändern verschiedene Vorzeichen. 28 28 29 29 3. **Graphische Skizze:** 30 30 31 31 i) Der Graph von {{formula}}f{{/formula}} ist //symmetrisch zur y-Achse//, denn {{formula}}f{{/formula}} ist //gerade//, denn die im Funktionsterm der Polynomfunktion {{formula}}f{{/formula}} auftretenden x-Potenzen sind allesamt gerade. 32 -ii) Der Graph von {{formula}}f{{/formula}} kommt von links //oben// und geht nach rechts //oben//, denn d asGlobalverhalten von {{formula}}f{{/formula}} ist das GlobalverhaltenderPotenzfunktion {{formula}}g{{/formula}} mit {{formula}}g(x)=x^4{{/formula}}.33 -iii) Der Graph von {{formula}}f{{/formula}} schneidet der Wertetabelle gemäß die x-Achse bei {{formula}}x_1{{/formula}}zwischen -2 und -1,5 (mitVZW +/-), bei {{formula}}x_2=-1{{/formula}} (mitVZW -/+), bei {{formula}}x_3=+1{{/formula}} (mitVZW +/-) undbei {{formula}}x_4{{/formula}}zwischen +1,5 und +2 (mitVZW -/+).34 -iv) Also gilt {{formula}}f(x)>0{{/formula}} füralle{{formula}}x<x_1{{/formula}},füralle{{formula}}x_2<x<x_3{{/formula}}undfüralle{{formula}}x>x_4{{/formula}}.31 +ii) Der Graph von {{formula}}f{{/formula}} kommt von links //oben// und geht nach rechts //oben//, denn die Vergleichsfunktion von {{formula}}f{{/formula}} ist die Potenzfunktion {{formula}}g{{/formula}} mit {{formula}}g(x)=x^4{{/formula}}. 32 +iii) Der Graph von {{formula}}f{{/formula}} schneidet der Wertetabelle gemäß die x-Achse zwischen -2 und -1,5 (VZW +/-), bei {{formula}}x=-1{{/formula}} (VZW -/+), bei {{formula}}x=+1{{/formula}} (VZW +/-) und zwischen +1,5 und +2 (VZW -/+). 33 +iv) Also gilt {{formula}}f(x)>0{{/formula}} zunächst bis zur ersten Nullstelle (zwischen -2 und -1,5 gelegen), weiter zwischen den Nullstellen -1 und +1 und zuletzt ab der vierten Nullstelle (zwischen +1,5 und +2 gelegen). 35 35 36 36 4. **Rechnerisches Verfahren:** 37 37 38 -i) //Faktorisieren// (Satz von Vieta zzgl. dritte binomische Formel): {{formula}}f(x) = x^4 - 4x^2 + 3 = (x^2 - 1)(x^2 - 3) = (x +\sqrt{3})(x+1)(x -1)(x -\sqrt{3}){{/formula}} 39 -ii) //Nullstellen// (jeweils 1-fach): {{formula}}x_1=-\sqrt{3}{{/formula}}, {{formula}}x_2=-1{{/formula}}, {{formula}}x_3=+1{{/formula}}, {{formula}}x_4=+\sqrt{3}{{/formula}} 40 -iii) //Vorzeichenanalyse.// 41 -iii.1) Wenn die Vielfachheiten aller Nullstellen bekannt sind, dann genügt auch das Globalverhalten bzw. eine Teststelle. 42 -iii.2) Testwertverfahren: Wähle in jedem der fünf Teilintervalle eine //Teststelle// und ermittle das Vorzeichen vom zugehörigen Funktionswert. 37 +i) Faktorisieren: {{formula}}f(x) = x^4 - 4x^2 + 3 = (x^2 - 1)(x^2 - 3) = (x -(-\sqrt{3})(x -(- 1))(x - (+1))(x - (+\sqrt{3}){{/formula}} 38 +ii) Nullstellen (jeweils 1-fach): {{formula}}\pm \sqrt{3}; \pm 1{{/formula}} 39 +iii) Vorzeichenanalyse: 43 43 44 - (%class="borderslim"%)45 -| Intervall|Testwert|{{formula}}f(x){{/formula}}46 -| {{formula}}x < x_1{{/formula}}+{{/formula}}47 -| {{formula}} x_1< x < x_2{{/formula}}48 -| {{formula}} x_2< x < x_3{{/formula}} | {{formula}}x = 0{{/formula}}+{{/formula}}49 -| {{formula}} x_3< x < x_4{{/formula}}50 -| {{formula}}x > x_4{{/formula}}+{{/formula}}41 +| Intervall | Testwert | Vorzeichen von {{formula}}f(x){{/formula}} | 42 +|----------------------------------|----------|---------------------------------------------| 43 +| {{formula}}x < -\sqrt{3}{{/formula}} | {{formula}}x = -2{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} | 44 +| {{formula}}(-\sqrt{3}, -1){{/formula}} | {{formula}}x = -1{,}5{{/formula}} | {{formula}}f(x) = -0{,}9375 < 0{{/formula}} | 45 +| {{formula}}(-1,\ 1){{/formula}} | {{formula}}x = 0{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} | 46 +| {{formula}}(1,\ \sqrt{3}){{/formula}} | {{formula}}x = 1{,}5{{/formula}} | {{formula}}f(x) = -0{,}9375 < 0{{/formula}} | 47 +| {{formula}}x > \sqrt{3}{{/formula}} | {{formula}}x = 2{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} | 51 51 52 - *Gesuchte Lösung:*53 - Die Ungleichung{{formula}}f(x) > 0{{/formula}} ist erfüllt füralle{{formula}}x{{/formula}}in:49 +iv) Gesuchte Lösung: 50 +{{formula}}f(x) > 0{{/formula}} ist erfüllt für {{formula}}\mathbb{L}=]-\infty; -\sqrt{3}[ \cup ]-1; +1[ \cup ]\sqrt{3}; +\infty[{{/formula}} 54 54 55 -**L** = *der Vereinigung der folgenden offenen Intervalle:* 56 -„kleiner als die kleinste Nullstelle“: {{formula}}x < -\sqrt{3}{{/formula}} 57 -„zwischen –1 und 1“: {{formula}}-1 < x < 1{{/formula}} 58 -„größer als die größte Nullstelle“: {{formula}}x > \sqrt{3}{{/formula}} 52 +--- 59 59 60 - →Formal:54 +5. **Vergleich der Verfahren:** 61 61 62 -{{formula}}\mathbb{L} = ]-\infty,\ -\sqrt{3}[ \cup ]-1,\ 1[ \cup ]\sqrt{3},\ \infty[{{/formula}} 56 +- Das **tabellarische Verfahren** gibt erste Hinweise auf das Verhalten der Funktion, eignet sich zur Erkundung durch systematisches Probieren, bleibt aber ungenau bei der Bestimmung von Nullstellenpositionen. 57 +- Das **graphische Verfahren** bietet anschauliche Orientierung: Vorzeichenwechsel, Lage zur x-Achse und Symmetrie werden sichtbar. Es stützt das funktionale Verständnis, ist aber zeichengenauigkeitsabhängig. 58 +- Das **rechnerische Verfahren** liefert exakte Aussagen zu Nullstellen, Intervallen und Lösungsmenge. Es ist unverzichtbar für formale Sicherheit, setzt jedoch algebraische Fähigkeiten voraus. 63 63 64 -**Anmerkung:** 60 +**Didaktisch:** 61 +Die Verfahren stehen in einer natürlichen Lernprogression: 62 +Vom **konkreten Probieren (Tabelle)** über das **visuelle Erfassen (Graph)** hin zum **symbolischen Durchdringen (Rechnung)**. Ihr Zusammenspiel stärkt nachhaltiges Verständnis für das Verhalten ganzrationaler Funktionen. 63 + 64 +{{/loesung}} 65 + 66 +--- 67 + 68 +**Zusammenfassung:** 65 65 - Das **tabellarische Verfahren** zeigt erste Hinweise auf Nullstellen und Verläufe. 66 66 - Das **graphische Verfahren** unterstützt die visuelle Einschätzung von Steigung und Vorzeichenbereichen. 67 67 - Das **rechnerische Verfahren** liefert die exakte Lösung in Produktform und damit eine genaue Bestimmung der Lösungsmenge. 72 + 73 +{{/loesung}} 74 +