Änderungen von Dokument BPE 12.4 Stammfunktionen, Graphisches Aufleiten
Zuletzt geändert von akukin am 2024/10/10 16:04
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -11,5 +11,14 @@ 11 11 Im Unterricht eines J2-Kurses soll die Funktion {{formula}}f(x)=\frac{1}{2x}{{/formula}} aufgeleitet werden. Johann rechnet mit der Kettenregel der Aufleitung wie folgt: {{formula}}F(x)=\frac{1}{2}\ln(|2x|){{/formula}}. Johannes mag die Kettenregel nicht und formt den Term von //f// zunächst um: {{formula}}f(x)=\frac{1}{2}\cdot\frac{1}{x}{{/formula}}, denn danach wird die Aufleitung ganz einfach: {{formula}}F(x)=\frac{1}{2}\ln(|x|){{/formula}}. Die beiden geraten in eine Diskussion darüber, welche Lösung richtig ist. Überprüfe dies. 12 12 {{/aufgabe}} 13 13 14 +{{aufgabe id="Transformation, Stammfunktion" afb="" kompetenzen="K1, K2, K4" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_A_11.pdf]]" niveau="e" tags="iqb"}} 15 +[[image:GraphTransformationStammfunktion.PNG||width="180" style="float: right"]] 16 +Die Abbildung zeigt den Graphen der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}}, dessen Extrempunkte {{formula}}\left(-1\middle|1\right){{/formula}} und {{formula}}\left(0\middle|0\right){{/formula}} sind, sowie den Punkt {{formula}}P{{/formula}}. 17 +1. Gib die Koordinaten des Tiefpunkts des Graphen der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}g{{/formula}} mit {{formula}}g\left(x\right)=-f\left(x-3\right){{/formula}} an. 18 +1. Der Graph einer Stammfunktion von {{formula}}f{{/formula}} verläuft durch {{formula}}P{{/formula}}. Skizziere diesen Graphen in der Abbildung. 19 + 20 + 21 +{{/aufgabe}} 22 + 14 14 {{seitenreflexion/}} 15 15