Zuletzt geändert von Martina Wagner am 2025/02/04 20:02

Von Version 75.1
bearbeitet von Martina Wagner
am 2024/10/15 09:39
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 34.1
bearbeitet von Torben Würth
am 2023/12/03 19:14
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.martinawagner
1 +XWiki.torbenwuerth
Inhalt
... ... @@ -3,11 +3,8 @@
3 3  [[Kompetenzen.K1]] Ich kann die Notwendigkeit der Zahlbereichserweiterung auf reelle Zahlen begründen
4 4  [[Kompetenzen.K5]] [[Kompetenzen.K4]] Ich kann Teilmengen der reellen Zahlen mithilfe von Mengensymbolen, durch Ungleichungen sowie in Intervallschreibweise angeben.
5 5  
6 -{{lernende}}[[KMap Interaktiv Erkunden>>https://kmap.eu/app/browser/Mathematik/Grundwissen/Intervalle#erkunden]] → [[KMap Aufgaben>>https://kmap.eu/app/test/Mathematik/Grundwissen/Intervalle]]
7 -{{/lernende}}
8 -
9 -{{aufgabe id="Symbole und Namen" afb="I" kompetenzen="K4,K5" quelle="Torben Würth" cc="BY-SA" zeit="4"}}
10 -Die nachstehenden Symbole werden in der Mathematik für Zahlenmengen verwendet. Gib für jedes Symbol an, für welche Zahlenmenge es steht.
6 +{{aufgabe id="Symbole und Namen der Zahlenmengen" afb="I" kompetenzen="K4" quelle="Torben Würth" cc="BY-SA" zeit="4"}}
7 +Die nachstehenden Symbole werden in der Mathematik für Zahlenmengen verwendet. Schreibe hinter jedes Symbol, für welche Zahlenmenge es steht.
11 11  {{formula}}\mathbb{N}{{/formula}}
12 12  
13 13  {{formula}}\mathbb{Z}{{/formula}}
... ... @@ -19,9 +19,8 @@
19 19  {{formula}}\mathbb{R}{{/formula}}
20 20  {{/aufgabe}}
21 21  
22 -{{aufgabe id="Elemente" afb="I" kompetenzen="K4,K5" quelle="Torben Würth" cc="BY-SA" zeit="8"}}
23 -Gib zu jeder Zahlenmenge eine Teilmenge mit genau 3 Elementen an.
24 -
19 +{{aufgabe id="Elemente der Zahlenmengen" afb="I" kompetenzen="K4" quelle="Torben Würth" cc="BY-SA" zeit="8"}}
20 +Finde zu jeder Zahlenmenge eine Teilmenge mit genau Elementen.
25 25   Beispiel für {{formula}}\mathbb{N}{{/formula}}:
26 26  
27 27   Beispiel für {{formula}}\mathbb{Z}{{/formula}}:
... ... @@ -28,63 +28,41 @@
28 28  
29 29   Beispiel für {{formula}}\mathbb{Q}{{/formula}}:
30 30  
31 - Beispiel für {{formula}}\mathbb{I}{{/formula}}: {{formula}}\{\sqrt{2}; \pi; e\}{{/formula}} ist eine Teilmenge der irrationalen Zahlen. Kurzschreibweise: {{formula}}\{\sqrt{2}; \pi; e\} \subset \mathbb{I}{{/formula}}
27 + Beispiel für {{formula}}\mathbb{I}{{/formula}}: {{formula}}\{\sqrt{2}, \pi , e\}{{/formula}} ist eine Teilmenge der irrationalen Zahlen. Kurzschreibweise: {{formula}}\{\sqrt{2}, \pi , e\} \subset \mathbb{I}{{/formula}}
32 32  
33 33   Beispiel für {{formula}}\mathbb{R}{{/formula}}:
34 34  {{/aufgabe}}
35 35  
36 -{{aufgabe id="Element von" afb="I" kompetenzen="K4,K5" quelle="Torben Würth" cc="BY-SA" zeit="10"}}
37 -Entscheide, ob die Zahl in der ersten Spalte ein Element der jeweiligen Menge ist. Kreuze an.
38 -(% class="border" %)
39 -|=|={{formula}}\mathbb{N}^*{{/formula}}|={{formula}}\mathbb{N}{{/formula}}|={{formula}}\mathbb{Z}_-{{/formula}}|={{formula}}\mathbb{Z}_+{{/formula}}|={{formula}}\mathbb{Z}{{/formula}}|={{formula}}\mathbb{Q}_-{{/formula}}|={{formula}}\mathbb{Q}_+^*{{/formula}}|={{formula}}\mathbb{Q}{{/formula}}|={{formula}}\mathbb{R}_-{{/formula}}|={{formula}}\mathbb{R}_+{{/formula}}|={{formula}}\mathbb{R}{{/formula}}
40 -|= {{formula}}\frac{3}{4}{{/formula}}|=|=|=|=|=|=|=|=|=|=|=
41 -|= {{formula}}-\frac{6}{5}{{/formula}}|=|=|=|=|=|=|=|=|=|=|=
42 -|= {{formula}}\frac{10}{2}{{/formula}}|=|=|=|=|=|=|=|=|=|=|=
43 -|= {{formula}}4{{/formula}}|={{formula}}\times{{/formula}}|{{formula}}\times{{/formula}}|{{formula}}\{{/formula}}|{{formula}}\times{{/formula}}|={{formula}}\times{{/formula}}|{{formula}}\{{/formula}}|={{formula}}\times{{/formula}}|{{formula}}\times{{/formula}}|={{formula}}\times{{/formula}}|{{formula}}\times{{/formula}}|={{formula}}\times{{/formula}}
44 -|= {{formula}}0{{/formula}}|=|=|=|=|=|=|=|=|=|=|=
45 -|= {{formula}}-6{{/formula}}|=|=|=|=|=|=|=|=|=|=|=
46 -|= {{formula}}\sqrt[4]{16}{{/formula}}|=|=|=|=|=|=|=|=|=|=|=
47 -|= {{formula}}\sqrt{4}{{/formula}}|=|=|=|=|=|=|=|=|=|=|=
48 -|= {{formula}}\sqrt{5}{{/formula}}|=|=|=|=|=|=|=|=|=|=|=
49 -|= {{formula}}(-3)^5{{/formula}}|=|=|=|=|=|=|=|=|=|=|=
50 -|= {{formula}}3^{-1}{{/formula}}|=|=|=|=|=|=|=|=|=|=|=
51 -|= {{formula}}(-2)^{-2}{{/formula}}|=|=|=|=|=|=|=|=|=|=|=
32 +{{aufgabe id="Ist Element von oder ist nicht Element von?" afb="I" kompetenzen="K4" quelle="Torben Würth" cc="BY-SA" zeit="10"}}
33 + Vervollständige die nachstehende Tabelle.
34 +(% style="background-color:red;text-align:center" %)
35 +|=|=(% style="background-color:yellow" %){{formula}}\mathbb{N}{{/formula}}|={{formula}}\mathbb{N}_0{{/formula}}|=(% style="background-color:yellow" %){{formula}}\mathbb{Z}^-{{/formula}}|={{formula}}\mathbb{Z}_+{{/formula}}|=(% style="background-color:yellow" %){{formula}}\mathbb{Z}{{/formula}}|={{formula}}\mathbb{Q}^-{{/formula}}|=(% style="background-color:yellow" %){{formula}}\mathbb{Q}^+{{/formula}}|={{formula}}\mathbb{Q}{{/formula}}|=(% style="background-color:yellow" %){{formula}}\mathbb{R}^-{{/formula}}|={{formula}}\mathbb{R}^+{{/formula}}|=(% style="background-color:yellow" %){{formula}}\mathbb{R}{{/formula}}
36 +|= {{formula}}\frac{3}{4}{{/formula}}|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)
37 +|= {{formula}}\frac{-4}{5}{{/formula}}|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)
38 +|= {{formula}}-\frac{6}{5}{{/formula}}|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)
39 +|= {{formula}}\frac{10}{2}{{/formula}}|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)
40 +|= {{formula}}4{{/formula}}|=(% style="background-color:yellow" %){{formula}}\in{{/formula}}|{{formula}}\in{{/formula}}|(% style="background-color:yellow" %){{formula}}\notin{{/formula}}|{{formula}}\in{{/formula}}|=(% style="background-color:yellow" %){{formula}}\in{{/formula}}|{{formula}}\notin{{/formula}}|=(% style="background-color:yellow" %){{formula}}\in{{/formula}}|{{formula}}\in{{/formula}}|=(% style="background-color:yellow" %){{formula}}\notin{{/formula}}|{{formula}}\in{{/formula}}|=(% style="background-color:yellow" %){{formula}}\in{{/formula}}
41 +|= {{formula}}0{{/formula}}|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)
42 +|= {{formula}}-6{{/formula}}|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)
43 +|= {{formula}}\sqrt[4]{16}{{/formula}}|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)
44 +|= {{formula}}\sqrt{4}{{/formula}}|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)
45 +|= {{formula}}\sqrt{5}{{/formula}}|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)
46 +|= {{formula}}(-3)^5{{/formula}}|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)
47 +|= {{formula}}3^{-1}{{/formula}}|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)
48 +|= {{formula}}(-2)^{-2}{{/formula}}|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)
49 +|= {{formula}}tan 45^{o}{{/formula}}|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)|=|=(% style="background-color:yellow" %)
52 52  {{/aufgabe}}
53 53  
52 +{{aufgabe id="Teilmengen" afb="I" kompetenzen="K4" quelle="Torben Würth" cc="BY-SA" zeit="8"}}
53 +Schau Dir die Mengen {{formula}}A=\{1,3,4,5,9\}{{/formula}}; {{formula}}B=\{3,,5,6,7,8\}{{/formula}}; {{formula}}C=\{\frac{6}{2}, \frac{1}{3}, \frac{7}{5}\}{{/formula}}, {{formula}}D={1,-3,4,5,9}{{/formula}} und {{formula}}E=\{\frac{2}{6}, \frac{5}{6}, \frac{6}{7}, \frac{7}{8}, \frac{8}{9}\}{{/formula}} an.
54 54  
55 -{{aufgabe id="Platzhalter" afb="II" kompetenzen="K2,K4,K5" quelle="Martina Wagner" cc="BY-SA" zeit="9"}}
56 -Gegeben ist ein jeweils Term mit Platzhaltern für selbst gewählte Zahlen von 0 bis 9. Jede Zahl darf nur genau einmal verwendet werden. Ermittle mögliche Zahlen für den Term, sodass das Ergebnis des Terms ..
57 -
58 -(% style="list-style: alphastyle" %)
59 -1. (((ein Element von {{formula}}\mathbb{N}{{/formula}} ist.
60 -{{formula fontsize="larger"}}\frac{\square}{\square} - \frac{\square}{\square} \cdot \frac{\square}{\square} ={{/formula}}
61 -)))
62 -1. (((ein Element von {{formula}}\mathbb{Z_-}{{/formula}} ist.
63 -{{formula fontsize="larger"}}\frac{\square}{\square} - \frac{\square}{\square} \cdot \frac{\square}{\square} ={{/formula}}
64 -)))
65 -1. (((ein Element von {{formula}}\mathbb{Q_+}\setminus\mathbb{Z_+}{{/formula}} ist.
66 -{{formula fontsize="larger"}}\frac{\square}{\square} - \frac{\square}{\square} \cdot \frac{\square}{\square} ={{/formula}}
67 -)))
68 -{{/aufgabe}}
69 -
70 -{{aufgabe id="Beziehungen und Mächtigkeit" afb="III" kompetenzen="K1,K4,K5, K6" quelle="Torben Würth" cc="BY-SA" zeit="15"}}
71 -Schau dir die Mengen {{formula}}A=\{1;3;4;5;9\}{{/formula}}, {{formula}}B=\{3;5;6;7;8\}{{/formula}}, {{formula}}C=\{\frac{6}{2}; \frac{1}{3}; \frac{7}{5}\}{{/formula}}, {{formula}}D=\{1;-3;4;5;9\}{{/formula}} und {{formula}}E=\{\frac{2}{6}; \frac{5}{6}; \frac{6}{7}; \frac{7}{8}; \frac{8}{9}\}{{/formula}} an.
72 -
73 -Begründe, ob folgende Aussagen richtig oder falsch sind:
55 +Entscheide (mit Begründung), ob folgende Aussagen richtig oder falsch sind:
74 74  1) {{formula}}A\subset B{{/formula}}
75 -2) {{formula}}(A\cup B)\setminus B=A{{/formula}}
76 -3) {{formula}}B \cap C \subset \mathbb{Z}{{/formula}}
77 -4) {{formula}}C \cap E = \emptyset{{/formula}}
78 -5) {{formula}}(A \cup D) \setminus \mathbb{Z_-}=A{{/formula}}
79 -6) {{formula}}(\mathbb{Z} \cup \mathbb{Q}) \cap \mathbb{R}= \mathbb{Q}{{/formula}}
57 + Beispiel für {{formula}}\mathbb{N}{{/formula}}
58 + Beispiel für {{formula}}\mathbb{Z}{{/formula}}:
80 80  
60 + Beispiel für {{formula}}\mathbb{Q}{{/formula}}:
61 +
62 + Beispiel für {{formula}}\mathbb{R}{{/formula}}:
81 81  {{/aufgabe}}
82 82  
83 -{{lehrende}}
84 -Was die Abdeckung des BPE angeht, könnte man argumentieren, dass manches hier nicht gefordert ist. Jedoch werden {{formula}}\cup{{/formula}} und {{formula}}\cap{{/formula}} in der Stochastik benötigt und {{formula}}\subset{{/formula}}, {{formula}}\supset{{/formula}} und {{formula}}\setminus{{/formula}} sind hilfreich, um Zahlenmengen zu vergleich bzw. um z.B. die Menge aller rellen Zahlen ohne die Null zu notieren.
85 -
86 -Der Anforderungsbereich III muss an dieser Stelle nicht bedient werden.
87 -{{/lehrende}}
88 -
89 -{{seitenreflexion bildungsplan="4" kompetenzen="5" anforderungsbereiche="5" kriterien="3" menge="5"/}}
90 -