Änderungen von Dokument BPE 3.4 Polynomgleichungen

Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:20

Von Version 68.1
bearbeitet von Martin Rathgeb
am 2025/04/06 20:40
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 76.1
bearbeitet von Martin Rathgeb
am 2025/04/07 23:12
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -102,7 +102,7 @@
102 102  {{/formula}})))
103 103  {{/aufgabe}}
104 104  
105 -{{aufgabe id="Einfache Ungleichung" afb="I" kompetenzen="K4" quelle="Stefanie Schmidt" lizenz="BY-SA"}}
105 +{{aufgabe id="Einfache Ungleichung" afb="I" kompetenzen="K4" quelle="Stefanie Schmidt" lizenz="BY-SA" zeit="10"}}
106 106  Sara und Paul möchten folgende Ungleichung lösen: {{formula}}-a < -b{{/formula}}
107 107  Sara und Paul haben unterschiedliche Ideen, wie sie die Gleichung lösen möchten.
108 108  Sara möchte zu beiden Seiten {{formula}}a+b{{/formula}} addieren.
... ... @@ -110,27 +110,28 @@
110 110  Gib an, wie sich die Gleichung jeweils verändert und welche Idee zur Lösung der Ungleichung führt.
111 111  {{/aufgabe}}
112 112  
113 -{{aufgabe id="Verfahren Ungleichungen" afb="II" kompetenzen="K4" quelle="ChatGPT (Fachberatung), überarbeitet durch Martin Rathgeb" lizenz="BY-SA"}}
113 +{{aufgabe id="Verfahren Ungleichungen" afb="II" kompetenzen="K4" quelle="ChatGPT (Fachberatung), überarbeitet durch Martin Rathgeb" lizenz="BY-SA" zeit="15"}}
114 114  Erläutere die drei grundlegenden Verfahren zur Lösung von Polynomungleichungen:
115 115  (% class="abc" %)
116 116  1. das tabellarische Verfahren,
117 117  1. das graphische Verfahren,
118 118  1. das rechnerische Verfahren.
119 +
120 +//Alternativ.// Stelle dir vor, du sollst einem Mitschüler oder einer Mitschülerin erklären, welches der drei Verfahren zur Lösung von Polynomungleichungen in welcher Situation besonders sinnvoll ist. Formuliere eine Empfehlung mit Begründung und zeige dabei, dass du die Verfahren sicher verstanden hast.
119 119  {{/aufgabe}}
120 120  
121 -{{aufgabe id="Anwendung drei Verfahren" afb="II" kompetenzen="K4, K5" quelle="ChatGPT (Fachberatung), überarbeitet durch Fachlehrkraft" lizenz="BY-SA"}}
122 -Gegeben ist die Polynomfunktion {{formula}}f{{/formula}} mit {{formula}}f(x) = x^3 - 3x^2 - 4x + 12{{/formula}}.
123 -Untersuche, für welche Werte von {{formula}}x{{/formula}} die Ungleichung {{formula}}f(x) \le 0{{/formula}} gilt.
123 +{{aufgabe id="Anwendung drei Verfahren" afb="II" kompetenzen="K4, K5" quelle="ChatGPT (Fachberatung), überarbeitet durch Martin Rathgeb" lizenz="BY-SA" zeit="25"}}
124 +Gegeben ist die Polynomfunktion {{formula}}f{{/formula}} mit {{formula}}f(x) = x^4 - 4x^2 + 3{{/formula}}. Untersuche, für welche Werte von {{formula}}x{{/formula}} die Ungleichung {{formula}}f(x) > 0{{/formula}} erfüllt ist. Vergleiche dazu die drei grundlegenden Verfahren zur Bearbeitung einer Polynomungleichung:
124 124  
125 -Verwende zur Lösung die drei grundlegenden Verfahren zur Bearbeitung von Polynomungleichungen.
126 126  (% class="abc" %)
127 -1. Bearbeite die Aufgabe zunächst tabellarisch: Erstelle eine Wertetabelle, berechne geeignete Funktionswerte (z. B. für ganzzahlige //x//-Werte im Bereich von –3 bis +5) und schätze daraus die Lösung der Ungleichung näherungsweise ab.
128 -1. Bearbeite die Aufgabe graphisch: Skizziere den Graphen der Funktion (z. B. mithilfe der Wertetabelle oder des GTR/WTR) und ermittle daraus die Lösungsmenge visuell.
129 -1. Bearbeite die Aufgabe rechnerisch: Bestimme die Nullstellen von //f// und analysiere das Vorzeichenverhalten mithilfe eines Intervallschemas.
127 +1. //Tabellarisches Verfahren (Teil 1).// Erstelle zunächst eine Wertetabelle für {{formula}}x = -2,\ -1,\ 0,\ 1,\ 2{{/formula}}. Interpretiere das Vorzeichenverhalten von {{formula}}f(x){{/formula}}.
128 +1. //Tabellarisches Verfahren (Teil 2).// Ergänze anschließend weitere Funktionswerte für {{formula}}x = -1{,}5,\ -0{,}5,\ 0{,}5,\ 1{,}5{{/formula}}. Interpretiere nun genauer, in welchen Intervallen die Ungleichung erfüllt sein könnte.
129 +1. //Graphisches Verfahren.// Skizziere den Graphen der Funktion qualitativ. Nutze dafür die bisherigen Werte sowie Kenntnisse über Achsensymmetrie und das Verhalten im Unendlichen.
130 +1. //Rechnerisches Verfahren.// Bestimme die Nullstellen rechnerisch und leite daraus die Lösung der Ungleichung {{formula}}f(x) > 0{{/formula}} ab.
130 130  {{/aufgabe}}
131 131  
132 132  {{aufgabe id="Quadratische Ungleichung" afb="I" kompetenzen="K4" quelle="Stefanie Schmidt" lizenz="BY-SA"}}
133 -Gegeben ist die Ungleichung {{formula}}3x^2+12x+9\le0{{/formula}}
134 +Gegeben ist die Ungleichung {{formula}}3x^2+12x+9\le0{{/formula}}.
134 134  (% class="abc" %)
135 135  1. Löse die Ungleichung graphisch
136 136  1. Löse die Ungleichung algebraisch, ggf. unter Zuhilfenahme einer Skizze.
... ... @@ -137,7 +137,7 @@
137 137  {{/aufgabe}}
138 138  
139 139  {{aufgabe id="Quadratische Ungleichung" afb="II" kompetenzen="K4" quelle="Stefanie Schmidt" lizenz="BY-SA"}}
140 -Gesucht ist nach dem Intervall, in dem die Funktion //f// mit {{formula}}f(x)=3x^2+12x+9{{/formula}} unterhalb der x-Achse verläuft. Untersuche, ob folgende Ungleichung den Sachverhalt widerspiegelt: {{formula}}-(3x^2+12x+9)>0{{/formula}}
141 +Gesucht ist nach dem Intervall, in dem die Funktion //f// mit {{formula}}f(x)=3x^2+12x+9{{/formula}} unterhalb der x-Achse verläuft. Untersuche, ob folgende Ungleichung den Sachverhalt widerspiegelt: {{formula}}-(3x^2+12x+9)>0{{/formula}}.
141 141  {{/aufgabe}}
142 142  
143 143  {{lehrende}}