Zuletzt geändert von akukin am 2024/12/22 18:42

Von Version 94.4
bearbeitet von Holger Engels
am 2024/11/15 12:20
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 55.2
bearbeitet von Frauke Beckstette
am 2024/02/06 10:27
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.holgerengels
1 +XWiki.beckstette
Inhalt
... ... @@ -6,137 +6,27 @@
6 6  [[Kompetenzen.K6]] [[Kompetenzen.K5]] Ich kann den Betrag eines Vektors als seine Länge interpretieren
7 7  [[Kompetenzen.K5]] Ich kann Vektoren zur Bestimmung von Teilpunkten einer Strecke verwenden
8 8  
9 -{{aufgabe id="Vektoraddition zeichnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6" links="[[Interaktiv>>https://kmap.eu/app/exercise/Mathematik/Rechnen%20mit%20Vektoren/Addition%20und%20Subtraktion/Addition]]"}}
10 -Gegeben sind die Vektoren {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}} und {{formula}}\vec{b}= \left(\begin{array}{c}-2\\1 \end{array}\right){{/formula}}
11 -Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch ...
12 -(% class="abc" %)
13 -1. {{formula}}\vec{a}+\vec{b}{{/formula}}
14 -1. {{formula}}\vec{a}-2\vec{b}{{/formula}}
15 -{{/aufgabe}}
9 +== Vektoren ==
16 16  
17 -{{aufgabe id="Vektoraddition zeichnerisch 2" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="8"}}
18 -Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{b}+\vec{c}{{/formula}}
19 -a)
20 -{{formula}}\vec{a}= \left(\begin{array}{c}2\\3 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}4\\1 \end{array}\right){{/formula}} ; {{formula}}\vec{c}= \left(\begin{array}{c}-1\\2 \end{array}\right){{/formula}}
21 -b)
22 -{{formula}}\vec{a}= \left(\begin{array}{c}-2\\2 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}3\\-4 \end{array}\right){{/formula}} ; {{formula}}\vec{c}= \left(\begin{array}{c}3\\3\end{array}\right){{/formula}}
11 +{{aufgabe id="Vektor" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
12 +Der Vektor {{formula}}\vec{a}= \left(\begin{array}{c} a_1 \\ a_2 \end{array}\right){{/formula}} verläuft parallel zur zweiten Winkelhalbierenden.
13 +Zusätzlich soll gelten: {{formula}}\left(\begin{array}{c} 3 \\ 1 \end{array}\right) + \vec{a} = \left(\begin{array}{c} 0,5 \\ d \end{array}\right){{/formula}}.
14 +Bestimme den Wert von d.
23 23  {{/aufgabe}}
24 24  
25 -{{aufgabe id="Vektoraddition rechnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="12"}}
26 -Berechne
27 -a)
28 -{{formula}}\left(\begin{array}{c}12\\7 \end{array}\right)+\left(\begin{array}{c}2\\4 \end{array}\right)={{/formula}}
29 -b)
30 -{{formula}}\left(\begin{array}{c}-16\\33 \end{array}\right)+\left(\begin{array}{c}0,5\\-33 \end{array}\right)={{/formula}}
31 -c)
32 -{{formula}}\left(\begin{array}{c}-1,5\\\frac{1}{3} \end{array}\right)+\left(\begin{array}{c}\sqrt{2}\\\pi\end{array}\right)={{/formula}}
33 -d)
34 -{{formula}}\left(\begin{array}{c}\frac{1}{2}\sqrt{2}\\5\pi \end{array}\right)-\left(\begin{array}{c}\sqrt{2}\\\pi\end{array}\right)={{/formula}}
35 -e)
36 -{{formula}}\left(\begin{array}{c}\frac{3}{7}\\5 \end{array}\right)+\left(\begin{array}{c}\frac{5}{7}\\5 \end{array}\right)-\left(\begin{array}{c}\frac{1}{7}\\5 \end{array}\right)={{/formula}}
37 -
38 -f)
39 -{{formula}}\left(\begin{array}{c}1\\7\\9 \end{array}\right)+\left(\begin{array}{c}2\\4\\-1 \end{array}\right)={{/formula}}
40 -g)
41 -{{formula}}\left(\begin{array}{c}100\\71\\92 \end{array}\right)+\left(\begin{array}{c}203\\4\\-119\end{array}\right)={{/formula}}
42 -h)
43 -{{formula}}\left(\begin{array}{c}12,6\\8,1\\0,3\end{array}\right)-\left(\begin{array}{c}-0,6\\0,9\\\frac{1}{3}\end{array}\right)={{/formula}}
44 -i)
45 -{{formula}}\left(\begin{array}{c}1\\0,5\\4\end{array}\right)-\left(\begin{array}{c}-1\\0,5\\4\end{array}\right)+\left(\begin{array}{c}-1\\-2\\20\end{array}\right)={{/formula}}
46 -{{/aufgabe}}
47 -
48 -{{aufgabe id="Multiplikation eines Vektors mit einer Zahl zeichnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}}
49 -a) Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{a}=2\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}}
50 -b) Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{a}+\vec{a}=3\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}-2\\1 \end{array}\right){{/formula}}
51 -{{/aufgabe}}
52 -
53 -{{aufgabe id="Gemischte Aufgaben" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="10"}}
54 -a) {{formula}}2\left(\begin{array}{c}1\\3 \end{array}\right)={{/formula}}
55 -b) {{formula}}3\left(\begin{array}{c}-2\\1 \end{array}\right)={{/formula}}
56 -c) {{formula}}6\left(\begin{array}{c}-1\\6 \end{array}\right)={{/formula}}
57 -d) {{formula}}\frac{1}{3}\left(\begin{array}{c}-3\\18 \end{array}\right)={{/formula}}
58 -e) {{formula}}2\left(\begin{array}{c}\frac{3}{7}\\5 \end{array}\right)+ 3\left(\begin{array}{c}\frac{5}{7}\\5 \end{array}\right)-4\left(\begin{array}{c}\frac{1}{7}\\5 \end{array}\right)={{/formula}}
59 -f){{formula}}-2\left(\begin{array}{c}1\\0,5\\4\end{array}\right)-4\left(\begin{array}{c}-1\\0,5\\4\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}-1\\-2\\20\end{array}\right)={{/formula}}
60 -{{/aufgabe}}
61 -
62 -
63 -{{aufgabe id="Segelregatta Teil 1" afb="I" kompetenzen="K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}}
64 -Im Segel-Wettbewerb müssen nacheinander die einzelnen Bojen {{formula}}B_1{{/formula}} bis {{formula}}B_4{{/formula}} von außen umfahren werden. Das Rennen beginnt im Punkt {{formula}}S(40|0){{/formula}} und endet im Punkt {{formula}}Z(130|0){{/formula}}.
65 -
66 -Das Segelteam steuert das Schiff um die Bojen, sie segeln also entlang der folgenden Vektoren:
67 -{{formula}}\overrightarrow{s_1}= \left(\begin{array}{c} -20 \\ 80 \end{array}\right), \overrightarrow{s_2}= \left(\begin{array}{c} 20 \\ 50 \end{array}\right), \overrightarrow{s_3}= \left(\begin{array}{c} 75 \\ 40 \end{array}\right), \overrightarrow{s_4}= \left(\begin{array}{c} 35 \\ -55 \end{array}\right){{/formula}} und {{formula}}\overrightarrow{s_5}= \left(\begin{array}{c} -20 \\ -155 \end{array}\right){{/formula}}
68 -
69 -[[image:segelregatta teil1.png||width="600" style="display:block;margin-left:auto;margin-right:auto"]]
70 -Drücke die Vektoren {{formula}}\overrightarrow{s_1}, \overrightarrow{s_2}, \overrightarrow{s_3}, \overrightarrow{s_4}{{/formula}} und {{formula}}\overrightarrow{s_5}{{/formula}} durch Linearkombinationen folgender Vektoren aus:
71 -
72 -{{formula}}\vec{a}=\left(\begin{array}{c} 25 \\ 10 \end{array}\right), \vec{b}=\left(\begin{array}{c} -10 \\ 10 \end{array}\right), \vec{c}=\left(\begin{array}{c} 0 \\ 30 \end{array}\right), \vec{d}=\left(\begin{array}{c} 80 \\ 0 \end{array}\right){{/formula}}
73 -{{/aufgabe}}
74 -
75 -{{aufgabe id="Segelregatta Teil 2" afb="I" kompetenzen="K3, K4, K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="5"}}
76 -[[image:Segelregatta Teil 2.jpg||width="600" style="display:block;margin-left:auto;margin-right:auto"]]
77 -Im Segel-Wettbewerb müssen nacheinander die einzelnen Bojen {{formula}}B_1{{/formula}} bis {{formula}}B_4{{/formula}} von außen umfahren werden. Das Rennen beginnt im Punkt {{formula}}S(40|0){{/formula}} und endet im Punkt {{formula}}Z(130|0){{/formula}}.
78 -
79 -Das Segelteam steuert den untenstehenden Kurs um die Bojen. Dabei dient der „Landungspunkt“ jedes Vektors immer als Startpunkt für den neuen Vektor.
80 -
81 -{{formula}}\overrightarrow{f_1}= 3 \vec{b}+\frac{5}{3} \vec{c}, \qquad \overrightarrow{f_2}= \vec{a}- 2\vec{b}+\frac{7}{2} \vec{c}{{/formula}}
82 -
83 -{{formula}}\overrightarrow{f_3}= \vec{a}- \vec{b} + \frac{3}{4} \vec{d}, \qquad \overrightarrow{f_4}= 2\vec{b}-6,5\vec{c}{{/formula}}
84 -
85 -mit {{formula}}\vec{a}=\left(\begin{array}{c} 25 \\ 10 \end{array}\right), \quad \vec{b}=\left(\begin{array}{c} -10 \\ 10 \end{array}\right), \quad \vec{c}=\left(\begin{array}{c} 0 \\ 30 \end{array}\right), \quad \vec{d}=\left(\begin{array}{c} 80 \\ 0 \end{array}\right){{/formula}}
86 -
87 -Prüfe, ob der Kurs den Regeln der Regatta entspricht. Begründe deine Entscheidung.
88 -{{/aufgabe}}
89 -
90 -{{aufgabe id="Segelregatta Teil 3 (Länge einer Strecke)" afb="I" kompetenzen="K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="5"}}
91 -Im Segel-Wettbewerb müssen nacheinander die einzelnen Bojen {{formula}}B_1{{/formula}} bis {{formula}}B_4{{/formula}} von außen umfahren werden. Das Rennen beginnt im Punkt {{formula}}S(40|0){{/formula}} und endet im Punkt {{formula}}Z(130|0){{/formula}}.
92 -
93 -Das Segelteam steuert das Schiff um die Bojen, sie segeln also entlang der folgenden Vektoren:
94 -{{formula}}\overrightarrow{s_1}= \left(\begin{array}{c} -20 \\ 80 \end{array}\right), \overrightarrow{s_2}= \left(\begin{array}{c} 20 \\ 50 \end{array}\right), \overrightarrow{s_3}= \left(\begin{array}{c} 75 \\ 40 \end{array}\right), \overrightarrow{s_4}= \left(\begin{array}{c} 35 \\ -55 \end{array}\right){{/formula}} und {{formula}}\overrightarrow{s_5}= \left(\begin{array}{c} -20 \\ -155 \end{array}\right){{/formula}}.
95 -
96 -Berechne die Gesamtlänge dieses Segelkurses. Eine Längeneinheit im Koordinatensystem entspricht 100 Metern in der Wirklichkeit.
97 -
98 -[[image:SegelregattaTeil3.png||width="600" style="display:block;margin-left:auto;margin-right:auto"]]
99 -{{/aufgabe}}
100 -
101 101  {{aufgabe id="Vektoraddition" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
102 102  Gegeben sind die Punkte {{formula}}A(3|1|5){{/formula}}, {{formula}}B(5|2|4){{/formula}} und {{formula}}C(8|7|1){{/formula}}.
103 103  Berechne die Koordinaten von einem Punkt {{formula}}D(d_1|d_2|d_3){{/formula}}, wobei gilt: {{formula}}\overrightarrow{AB}-\overrightarrow{CA}+\overrightarrow{BC}-\overrightarrow{DA}=\overrightarrow{o}{{/formula}}
104 104  {{/aufgabe}}
105 105  
106 -{{aufgabe id="gleichschenkliges Dreieck" afb="I" kompetenzen="K1, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_B_3.pdf]]" cc="by" tags="iqb" zeit="10"}}
107 -Gegeben sind die Punkte {{formula}}A(5|-5|12){{/formula}}, {{formula}}B(5|5|12){{/formula}} und {{formula}}C(-5|5|12){{/formula}}.
22 +{{aufgabe id="Zylinder" afb="II" kompetenzen="K1, K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2020/abitur/pools2020/mathematik/erhoeht/2020_M_erhoeht_A_AGLA%28A2%29_1_1.pdf]]" niveau="e" tags="iqb" zeit="10"}}
108 108  
109 -1. Zeige, dass das Dreieck {{formula}}A, B, C{{/formula}} gleichschenklig ist.
110 -1. Begründe, dass {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} Eckpunkte eines Quadrats sein können, und gib die Koordinaten des vierten Eckpunktes {{formula}}D{{/formula}} dieses Quadrats an.
111 -{{/aufgabe}}
112 -
113 -{{aufgabe id="Saarpolygon" afb="I" kompetenzen="K1, K3, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_5.pdf]]" cc="by" niveau="e" tags="iqb" zeit="10"}}
114 -Die Abbildung 1 zeigt das sogenannte Saarpolygon, ein im Inneren begehbares Denkmal zur Erinnerung an den stillgelegten Kohlebergbau im Saarland. Das Saarpolygon kann in einem Koordinatensystem modellhaft durch den Streckenzug dargestellt werden, der aus den drei Strecken {{formula}}\overline{AB}{{/formula}} , {{formula}}\overline{BC}{{/formula}} und {{formula}}\overline{CD}{{/formula}} mit {{formula}}A(11|11|0){{/formula}}, {{formula}}B(-11|11|28){{/formula}}, {{formula}}C(11|-11|28){{/formula}} und {{formula}}D(-11|-11|0){{/formula}} besteht (vgl. Abbildung 2). {{formula}}A, B, C{{/formula}} und {{formula}}D{{/formula}} sind Eckpunkte eines Quaders. Eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Wirklichkeit.
115 -
116 -[[image:Saarpolygon.PNG||width="500" style="display:block;margin-left:auto;margin-right:auto"]]
117 -1. Begründe, dass die Punkte {{formula}}B{{/formula}} und {{formula}}C{{/formula}} symmetrisch bezüglich der {{formula}}x_3{{/formula}}-Achse liegen.
118 -1. Berechne die Länge des Streckenzugs in der Wirklichkeit.
119 -{{/aufgabe}}
120 -
121 -{{aufgabe id="Vektor" afb="II" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
122 -Der Vektor {{formula}}\vec{a}= \left(\begin{array}{c} a_1 \\ a_2 \end{array}\right){{/formula}} verläuft parallel zur zweiten Winkelhalbierenden.
123 -Zusätzlich soll gelten: {{formula}}\left(\begin{array}{c} 3 \\ 1 \end{array}\right) + \vec{a} = \left(\begin{array}{c} 0,5 \\ d \end{array}\right){{/formula}}.
124 -Bestimme den Wert von d.
125 -{{/aufgabe}}
126 -
127 -{{aufgabe id="Parallelogramm" afb="II" kompetenzen="K1, K2, K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}}
128 -Gegeben sind die Punkte {{formula}}A(1|2|3){{/formula}}, {{formula}}B(4|6|4){{/formula}}, {{formula}}C(2|9|6){{/formula}} und {{formula}}D(-1|5|5){{/formula}}.
129 -1. Zeige, dass das Viereck {{formula}}ABCD{{/formula}} ein Parallelogramm ist.
130 -1. Der Punkt {{formula}}P{{/formula}} liegt auf der Strecke {{formula}}\overline{BD}{{/formula}}. Berechne die Koordinaten des Punktes {{formula}}P{{/formula}} so, dass er die Strecke {{formula}}\overline{BD}{{/formula}} im Verhältnis {{formula}}1:4{{/formula}} teilt.
131 -{{/aufgabe}}
132 -
133 -{{aufgabe id="Zylinder" afb="II" kompetenzen="K1, K2, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2020/abitur/pools2020/mathematik/erhoeht/2020_M_erhoeht_A_AGLA%28A2%29_1_1.pdf]]" cc="by" niveau="e" tags="iqb" zeit="10"}}
134 134  In einem Koordinatensystem ist ein gerader Zylinder mit dem Radius 5 und der Höhe 10 gegeben, dessen Grundfläche in der {{formula}}x_1x_2{{/formula}}-Ebene liegt. {{formula}} M(8|5|10){{/formula}} ist der Mittelpunkt der Deckfläche.
135 135  1. Weise nach, dass der Punkt {{formula}}P(5|1|0) {{/formula}} auf dem Rand der Grundfläche des Zylinders liegt.
136 136  1. Unter allen Punkten auf dem Rand der Deckfläche hat der Punkt {{formula}} S {{/formula}} den kleinsten Abstand von {{formula}} P {{/formula}}, der Punkt {{formula}} T {{/formula}} den größten. Gib die Koordinaten von {{formula}} S {{/formula}} an und bestimme die Koordinaten von {{formula}} T {{/formula}}.
137 137  {{/aufgabe}}
138 138  
139 -{{aufgabe id="Vektoren Sechseck" afb="II" kompetenzen="K2, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_1.pdf]]" cc="by" niveau="g" tags="iqb" Zeit="10"}}
29 +{{aufgabe id="Vektoren Sechseck" afb="II" kompetenzen="K2, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_1.pdf]]" niveau="g" tags="iqb" Zeit="10"}}
140 140  Im abgebildeten Sechseck {{formula}}ABCDEF{{/formula}} sind jeweils zwei Seiten parallel zueinander.
141 141  [[image:Sechseckvektoren.png||width="250" style="float:right"]]
142 142  1. Stelle die Vektoren {{formula}}\Vec{x} {{/formula}} und {{formula}}\Vec{y} {{/formula}} jeweils mithilfe der Eckpunkte des Sechsecks dar. {{formula}}\Vec{x}=\Vec{b}+\Vec{c}+\Vec{d} \qquad \Vec{y}=\Vec{a}+\Vec{c} {{/formula}}
... ... @@ -144,33 +144,46 @@
144 144  1. Der Punkt {{formula}}A{{/formula}} hat in einem kartesischen Koordinatensystem die Koordinaten {{formula}}x_1 = 6, x_2 = 2 {{/formula}} und {{formula}}x_3=-4{{/formula}} Der Mittelpunkt der Strecke {{formula}}\overline{AB} {{/formula}} wird mit {{formula}}M {{/formula}} bezeichnet. Der Punkt {{formula}}K(2|0|8){{/formula}} ist der Mittelpunkt der Strecke {{formula}} \overline{AM} {{/formula}}. Ermittle die Koordinaten von {{formula}}B{{/formula}}.
145 145  {{/aufgabe}}
146 146  
147 -{{aufgabe id="Nachweis Dreieck" afb="III" kompetenzen="K1, K2, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_23.pdf]]" cc="by" niveau="g" tags="iqb" zeit="10"}}
37 +{{aufgabe id="Nachweis Dreieck" afb="III" kompetenzen="K1, K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_23.pdf]]" niveau="g" tags="iqb" zeit="10"}}
148 148  In einem kartesischen Koordinatensystem sind die Punkte {{formula}}A(1|2|5){{/formula}}, {{formula}}B(2|7|8){{/formula}} und {{formula}}C(-3|2|4){{/formula}} gegeben.
149 149  1. Weise nach, dass {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} Eckpunkte eines Dreiecks sind.
150 150  1. Für jede reelle Zahl {{formula}}a{{/formula}} ist ein Punkt {{formula}} D_a(a|2+a\sqrt{2}|5+\sqrt{2}) {{/formula}} gegeben. Bestimme alle Werte von {{formula}}a{{/formula}}, für die die Strecke von {{formula}} A{{/formula}} nach {{formula}}D_a{{/formula}} die Länge 2 hat.
151 151  {{/aufgabe}}
152 152  
153 -{{aufgabe id="Gleichschenkliges Dreieck und Flächeninhalt" afb="III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_4.pdf]]" cc="by" niveau="e" tags="iqb" zeit="10"}}
43 +{{aufgabe id="gleichschenkliges Dreieck" afb="I" kompetenzen="K1, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_B_3.pdf]]" niveau="e" tags="iqb" zeit="10"}}
44 +Gegeben sind die Punkte {{formula}}A(5|-5|12){{/formula}}, {{formula}}B(5|5|12){{/formula}} und {{formula}}C(-5|5|12){{/formula}}.
45 +
46 + a) Zeige, dass das Dreieck {{formula}}A, B, C{{/formula}} gleichschenklig ist.
47 +
48 + b) Begründe, dass {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} Eckpunkte eines Quadrats sein können, und gib die Koordinaten des vierten Eckpunktes {{formula}}D{{/formula}} dieses Quadrats an.
49 +{{/aufgabe}}
50 +
51 +{{aufgabe id="Saarpolygon" afb="I" kompetenzen="K1, K3, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_5.pdf]]" niveau="e" tags="iqb"}}
52 +Die Abbildung 1 zeigt das sogenannte Saarpolygon, ein im Inneren begehbares Denkmal zur Erinnerung an den stillgelegten Kohlebergbau im Saarland. Das Saarpolygon kann in einem Koordinatensystem modellhaft durch den Streckenzug dargestellt werden, der aus den drei Strecken {{formula}}\overline{AB}{{/formula}} , {{formula}}\overline{BC}{{/formula}} und {{formula}}\overline{CD}{{/formula}} mit {{formula}}A(11|11|0){{/formula}}, {{formula}}B(-11|11|28){{/formula}}, {{formula}}C(11|-11|28){{/formula}} und {{formula}}D(-11|-11|0){{/formula}} besteht (vgl. Abbildung 2). {{formula}}A, B, C{{/formula}} und {{formula}}D{{/formula}} sind Eckpunkte eines Quaders. Eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Wirklichkeit.
53 +
54 +[[image:Saarpolygon.PNG||width="500"]]
55 +a) Begründe, dass die Punkte {{formula}}B{{/formula}} und {{formula}}C{{/formula}} symmetrisch bezüglich der {{formula}}x_3{{/formula}}-Achse liegen.
56 +b) Berechne die Länge des Streckenzugs in der Wirklichkeit.
57 +{{/aufgabe}}
58 +
59 +
60 +{{aufgabe id="Parallelogramm" afb="II" kompetenzen="K1, K2, K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="5"}}
61 +Gegeben sind die Punkte {{formula}}A(1|2|3){{/formula}}, {{formula}}B(4|6|4){{/formula}}, {{formula}}C(2|9|6){{/formula}} und {{formula}}D(-1|5|5){{/formula}}.
62 + a) Zeige, dass das Viereck {{formula}}ABCD{{/formula}} ein Parallelogramm ist.
63 + b) Der Punkt {{formula}}P{{/formula}} liegt auf der Strecke {{formula}}\overline{BD}{{/formula}}. Berechne die Koordinaten des Punktes {{formula}}P{{/formula}} so, dass er die Strecke {{formula}}\overline{BD}{{/formula}} im Verhältnis {{formula}}1:4{{/formula}} teilt.
64 +{{/aufgabe}}
65 +
66 +{{aufgabe id="Gleichschenkliges Dreieck und Flächeninhalt" afb="III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_4.pdf]]" niveau="e" tags="iqb"}}
154 154  [[image:gleichschenkligesdreieckabb1.png||width="200" style="float: right"]]
155 155  Für {{formula}}k \in \mathbb{R} {{/formula}} mit {{formula}}0<k\leq 6{{/formula}} werden die Pyramiden {{formula}}ABCD_k {{/formula}} mit {{formula}}A(0|0|0), B(4|0|0), C(0|4|0){{/formula}} und {{formula}} D_k(0|0|k){{/formula}} betrachtet (vgl. Abbildung)
156 156  
157 157  1. Begründe, dass das Dreieck {{formula}}BCD_k{{/formula}} gleichschenklig ist.
158 158  1. Der Mittelpunkt der Strecke {{formula}}\overline{BC}{{/formula}} ist {{formula}}M(2|2|0){{/formula}}.
159 -Begründe, dass {{formula}}|\overline{MD_k}|=\left| \left(\begin{array}{c} -2 \\ -2 \\ k \end{array}\right)\right|{{/formula}} die Länge einer Höhe des Dreiecks {{formula}}BCD_k{{/formula}} ist.
72 +Begründe, dass {{formula}}|\overline{MD_k}|={{/formula}}{{formula}}\left| \left(\begin{array}{c} -2 \\ -2 \\ k \end{array}\right)\right|{{/formula}} die Länge einer Höhe des Dreiecks {{formula}}BCD_k{{/formula}} ist.
160 160  Bestimme den Flächeninhalt des Dreiecks {{formula}}BCD_k{{/formula}}.
161 161  {{/aufgabe}}
162 162  
163 -{{aufgabe id="Flächeninhalte Verhältnis" afb="II" kompetenzen="K1, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_9.pdf]]" niveau="g" tags="iqb" cc="by"}}
164 -Gegeben ist das Dreieck {{formula}}ABC{{/formula}} mit den Eckpunkten {{formula}}A,B{{/formula}} und {{formula}}C{{/formula}}. Für den Punkt {{formula}}D{{/formula}} gilt
165 -{{formula}}\overrightarrow{OD}=\overrightarrow{OC}-2\cdot\overrightarrow{AB}{{/formula}}
166 -wobei {{formula}}O{{/formula}} den Koordinatenursprung bezeichnet.
167 -
168 -Ermittle das Verhältnis des Inhalts der Fläche des Dreiecks {{formula}}ABC{{/formula}} zum Inhalt der Fläche des Trapezes {{formula}}ABCD{{/formula}}.
169 -Stelle dein Vorgehen durch eine geeignete Ergänzung der Abbildung dar.
170 -[[image:DreieckABC.PNG||width="250" style="display:block;margin-left:auto;margin-right:auto"]]
171 -{{/aufgabe}}
172 -
173 -{{aufgabe id="Schwerpunkt im Dreieck" afb="III" kompetenzen="K1, K2, K5" quelle="Beckstette, Fujan, Lautenschlager" cc="BY-SA" zeit="10" niveau="p"}}
76 +{{aufgabe id="Schwerpunkt im Dreieck" afb="III" kompetenzen="K1, K2, K5" quelle="Beckstette, Fujan, Lautenschlager" cc="BY-SA" zeit="5"}}
174 174  [[image:Schwerpunkt.png||width="350" style="float: right"]]
175 175  Gegeben ist das Dreieck {{formula}}ABC{{/formula}} mit den Eckpunkten {{formula}}A(0|0|0){{/formula}}, {{formula}}B(2|3|4){{/formula}} und {{formula}}C(-1|5|-2){{/formula}}.
176 176  Die Seitenhalbierenden eines Dreiecks schneiden sich im Schwerpunkt {{formula}}S{{/formula}}.
... ... @@ -177,6 +177,5 @@
177 177  
178 178  1. Berechne die Koordinaten des Schwerpunktes {{formula}}S{{/formula}}.
179 179  1. Weise mit Hilfe von Vektoren nach, dass der Schwerpunkt {{formula}}S{{/formula}} die Seitenhalbierenden im Verhältnis 2:1 teilt.
180 -{{/aufgabe}}
181 181  
182 -{{seitenreflexion bildungsplan="5" kompetenzen="4" anforderungsbereiche="4" kriterien="3" menge="4"/}}
84 +{{/aufgabe}}
DreieckABC.PNG
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -78.0 KB
Inhalt
Segelregatta Teil 2.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -713.2 KB
Inhalt
SegelregattaTeil3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -188.2 KB
Inhalt
segelregatta teil1.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.katharinalautenschlager
Größe
... ... @@ -1,1 +1,0 @@
1 -162.8 KB
Inhalt
segelregatta teil1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.katharinalautenschlager
Größe
... ... @@ -1,1 +1,0 @@
1 -323.8 KB
Inhalt
segelregatta teil2.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.katharinalautenschlager
Größe
... ... @@ -1,1 +1,0 @@
1 -153.8 KB
Inhalt
segelregatta teil2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.katharinalautenschlager
Größe
... ... @@ -1,1 +1,0 @@
1 -296.8 KB
Inhalt
segelregatta teil3.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.katharinalautenschlager
Größe
... ... @@ -1,1 +1,0 @@
1 -129.2 KB
Inhalt
segelregatta teil3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.katharinalautenschlager
Größe
... ... @@ -1,1 +1,0 @@
1 -323.8 KB
Inhalt
XWiki.XWikiComments[0]
Autor
... ... @@ -1,1 +1,0 @@
1 -XWiki.torbenwuerth
Kommentar
... ... @@ -1,5 +1,0 @@
1 -Ich würde vorschlagen:
2 -- mindestens zwei Aufgaben (eine eine zwei-, die andere dreidimensional) zur zeichnerischen und rechnerischen Addition von Vektoren.
3 -- mindestens zwei Aufgaben zur zeichnerischen Multiplikation und rechnerischen Multiplikation
4 -- eine umfangreiche Aufgabe (zwei-, dreidimensionol zur "stumpfen" Addition und Subtraktion von Vektoren
5 -- Eine Aufgabe, bei der die Vektoren zunächst zu bestimmen sind und danach addiert, subtrahiert werden
Datum
... ... @@ -1,1 +1,0 @@
1 -2024-02-06 10:47:43.240
XWiki.XWikiComments[1]
Autor
... ... @@ -1,1 +1,0 @@
1 -XWiki.beckstette
Kommentar
... ... @@ -1,1 +1,0 @@
1 -Die Reihenfolge sollte noch entsprechend des Schwierigkeitsgrades geändert werden.
Datum
... ... @@ -1,1 +1,0 @@
1 -2024-02-06 13:58:17.30
XWiki.XWikiComments[2]
Autor
... ... @@ -1,1 +1,0 @@
1 -XWiki.holgerengels
Kommentar
... ... @@ -1,1 +1,0 @@
1 -Ich hab die Reihenfolge nach dem AFB sortiert.
Datum
... ... @@ -1,1 +1,0 @@
1 -2024-10-09 20:57:43.485
XWiki.XWikiComments[3]
Autor
... ... @@ -1,1 +1,0 @@
1 -XWiki.holgerengels
Kommentar
... ... @@ -1,1 +1,0 @@
1 -Wir haben diese Untereinheit schon in Seligweiler, jetzt nochmal in Mannheim diskutiert, nachdem uns inzwischen auch Erfahrung aus dem Einsatz im Unterricht vorliegen. Die Seite ist Reproduktionslastig, enthält zu viele gleichartige, einfache Aufgaben.
Datum
... ... @@ -1,1 +1,0 @@
1 -2024-11-15 11:46:39.871