Zuletzt geändert von Martin Rathgeb am 2025/01/05 15:47

Von Version 7.1
bearbeitet von Martin Rathgeb
am 2025/01/03 22:39
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 8.1
bearbeitet von Martin Rathgeb
am 2025/01/03 22:43
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -1,13 +1,12 @@
1 1  [[Kompetenzen.K5]] Ich kann die Ableitungsregeln für zusammengesetzte Funktionen anwenden
2 2  [[Kompetenzen.K5]] Ich kann die Ableitungsregeln für zusammengesetzte Funktionen kombinieren
3 3  
4 -{{aufgabe id="Produktregel herleiten" afb="II" kompetenzen="K1,K5,K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="10"}}
4 +{{aufgabe id="Produktregel entdecken und begründen" afb="II" kompetenzen="K1,K5,K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="10"}}
5 5  Gegeben sind zwei lineare Funktionen {{formula}}f_i{{/formula}} mit {{formula}}f_i(x)=m_i x+b_i{{/formula}} für {{formula}}i=1,2{{/formula}}.
6 6  (% class="abc" %)
7 7  1. Ermittlere rechnerisch die Hauptform der Produktfunktion {{formula}}f=f_1\cdot f_2{{/formula}} und der ersten Ableitung //f'// von //f//.
8 8  1. Zeige, dass sich //f'// folgendermaßen schreiben lässt: {{formula}}f'=f_1'\cdot f_2+f_1\cdot f_2'{{/formula}}.
9 -1. Recherchieren Sie die Produktregel für Ableitungen; vgl. Merkhilfe Seite 5.
10 -1. Begründen Sie, dass durch die Teilaufgaben (a), (b) und (c) die Produktregel für differenzierbare Funktionen im Wesentlichen gezeigt ist, insofern differenzierbare Funktionen //lokal// "linear approximierbar" sind.\\
11 -Vgl. BPE 12.5 für die lokale lineare Approximation.
9 +1. Recherchiere die Produktregel für Ableitungen; vgl. Merkhilfe Seite 5.
10 +1. Begründe bzw. plausibilisiere, dass durch die Teilaufgaben (a) und (b) die Produktregel für differenzierbare Funktionen im Wesentlichen gezeigt ist. -- Verwenden dafür, dass differenzierbare Funktionen //lokal// "linear approximierbar" sind; vgl. dazu BPE 12.5 und 12.1.
12 12  {{/aufgabe}}
13 13