Änderungen von Dokument Lösung Zelt
Zuletzt geändert von Holger Engels am 2024/01/05 17:27
Von Version 2.1
bearbeitet von Holger Engels
am 2024/01/05 17:27
am 2024/01/05 17:27
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 1.1
bearbeitet von Holger Engels
am 2024/01/05 13:06
am 2024/01/05 13:06
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,5 +3,3 @@ 1 -Der Definitionsbereich für a ist {{formula}}]0; \sqrt(2,5^2+2,5^2)[ \approx [0; 3,5]{{/formula}} (Obergrenze abgerundet) 2 - 3 3 Die Höhe //h// ist abhängig von //a//. Durch zweimalige Anwendung des Satzes von Phytagoras lässt sich folgende Formel für die Höhe herleiten: 4 4 5 5 {{formula}}h \left ( a \right ) = \sqrt{2{,}5^{2} - \frac{1}{2} a^{2}}{{/formula}} ... ... @@ -20,15 +20,6 @@ 20 20 21 21 {{formula}}\Rightarrow a_1 = 0 \wedge \frac{100}{36} = \frac{1}{3}a^2{{/formula}} 22 22 23 -{{formula}}a_{2,3} =\pm \sqrt{\frac{300}{36}} \approx\pm2{,}89{{/formula}}21 +{{formula}}a_{2,3} \approx 2,89{{/formula}} 24 24 25 -Die Lösung {{formula}}a=2{,}89{{/formula}} ist die einzige, die im Definitionsbereich liegt und somit die gesuchte Maximalstelle. Bemerkung: Die Lösung {{formula}}a=0{{/formula}} (Kantenlänge Null) ist ein Minimum. 26 - 27 -{{formula}}V_{max}{{/formula}} ergibt sich durch Einsetzen von //a// in //V//: 28 - 29 -{{formula}}V \left ( \sqrt{\frac{300}{36}} \right ) = \frac{1}{3} \sqrt{\frac{300}{36}}^{2} · \sqrt{6{,}25 - \frac{1}{2} \sqrt{\frac{300}{36}}^{2}} \approx 4.01{{/formula}} 30 - 31 -Die zugehörige Höhe durch Einsetzen von //a// in //h//: 32 - 33 -{{formula}}h \left ( \sqrt{\frac{300}{36}} \right ) = \sqrt{2{,}5^{2} - \frac{1}{2} \sqrt{\frac{300}{36}}^{2}} \approx 1{,}44{{/formula}} 34 - 23 +Die Lösung //a,,1,,=0// (Kantenlänge Null) ist offensichtlich ein Minimum. Negative //a// (negative Kantenlängen) ergeben im Anwendungskontext keinen Sinn. Somit ist //a=2,89// die gesuchte Maximalstelle.