Änderungen von Dokument BPE 1 Einheitsübergreifend
Zuletzt geändert von Holger Engels am 2025/01/12 21:23
Von Version 87.1
bearbeitet von Martin Rathgeb
am 2025/01/06 21:14
am 2025/01/06 21:14
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (3 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 2 hinzugefügt, 1 gelöscht)
Details
- Seiteneigenschaften
-
- Titel
-
... ... @@ -1,1 +1,1 @@ 1 -BPE Einheitsübergreifend1 +BPE_1 - Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. martinrathgeb1 +XWiki.akukin - Inhalt
-
... ... @@ -1,127 +1,61 @@ 1 -{{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="8"}} 2 -(% class="abc" %) 3 -1. (((Fülle in folgenden Darstellungsformen einer Geraden die Lücken. 4 -(% class="border slim" %) 5 -| |{{formula}}y=\square 3\cdot (x-1)+\square{{/formula}} | 6 -|{{formula}}y=\square \cdot (x-2){{/formula}} |Graph: fallende Gerade in KoorSyS ohne Skalierung |{{formula}}y=\square \cdot x+\square{{/formula}} 7 -| |{{formula}}\frac{x}{\square}+\frac{y}{\square}=1{{/formula}} | 1 +{{aufgabe id="Gitterpunkte" afb="" zeit="" Kompetenzen="" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}} 2 +Legt man **rechtwinklige Dreiecke** so auf ein Gitter, dass alle drei Eckpunkte auf einem Gitterpunkt landen, dann befindet sich bei manchen dieser Dreiecke **kein einziger** Gitterpunkt auf der **Hypotenuse**. 8 8 9 -))) 10 -1. (((Nenne die Werte der charakteristischen Größen der Geraden: 11 -1. (((//Lage//. 12 -i. y-Achsenabschnitt {{formula}}b{{/formula}} mit y-Achsenschnittpunkt {{formula}}S_y{{/formula}} 13 -ii. x-Achsenabschnitt {{formula}}x_0{{/formula}} mit x-Achsenschnittpunkt {{formula}}S_x=N{{/formula}} 14 -))) 15 -1. (((//Kovariation//. 16 -i. Steigung {{formula}}m{{/formula}} 17 -ii. Krümmung 18 -))) 19 -))) 20 -{{/aufgabe}} 21 - 22 -{{aufgabe id="Formen von Geradengleichungen" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="12"}} 23 -In der Literatur werden folgende Formen der Geradengleichung unterschieden, wobei {{formula}}P(x_P|y_P){{/formula}} ein beliebiger Punkt der Geraden sei; vgl. Merkhilfe, S. 3 und 5. 24 -(% class="border slim" %) 25 -|Hauptform |{{formula}}y=m\cdot x+b{{/formula}} 26 -|Punkt-Steigungs-Form |{{formula}}y=m\cdot (x-x_P)+y_P{{/formula}} 27 -|Produktform |{{formula}}y=m \cdot (x-x_0){{/formula}} 28 -|Achsenabschnittsform |{{formula}}\frac{x}{x_0}+\frac{y}{y_0}=1{{/formula}} 29 -|Allgemeine Form |{{formula}}\alpha \cdot x + \beta \cdot y + \gamma = 0{{/formula}} 30 - 31 -(% class="abc" %) 32 -1. (((Ermittle für jede Gleichungsform {{formula}}\ldots{{/formula}} 33 -1. {{formula}}\ldots{{/formula}}, ob (und ggf. wie) sich die beiden //Winkelhalbierenden// (besondere Geraden) darstellen lassen. 34 -1. {{formula}}\ldots{{/formula}}, ob (und ggf. wie) sich die //Parallelen zu den Koordinatenachsen// (Typen besonderer Geraden) darstellen lassen. 35 -1. {{formula}}\ldots{{/formula}}, welche Werte charakteristischer Größen von {{formula}}g{{/formula}} sich direkt ablesen lassen; vgl. dazu vorausgegangenes Arithmagon. 36 - 37 -))) 38 -1. (((Erläutere, inwiefern {{formula}}\ldots{{/formula}} 39 -1. {{formula}}\ldots{{/formula}} die //Hauptform// und die //Produktform// zwei Spezialfälle der //Punkt-Steigungs-Form// sind. 40 -1. {{formula}}\ldots{{/formula}} nur die //Allgemeine Form// diese Bezeichnung mit Recht trägt; vgl. dazu a). 41 - 42 -))) 43 -1. Berechne aus den Parametern {{formula}}x_0, y_0{{/formula}} der Achsenabschnittsform die Steigung {{formula}}m{{/formula}}. 44 -{{/aufgabe}} 45 - 46 -{{aufgabe id="Klassenparty" afb="II" zeit="10" kompetenzen="K1,K3,K4,K5" quelle="Torben Würth" cc="BY-SA"}} 47 -Für eine Klassenparty stehen zwei Locations zur Verfügung. In der Almhütte muss für die Raummiete eine Gebühr von 20€ bezahlt werden, jedes Getränk kostet 2€. Im Hüttenzauber sind lediglich 2,5€ pro Getränk zu zahlen, eine Raummiete fällt nicht an. 48 -Begründe, für welche Location Du dich entscheiden würdest. 49 -{{/aufgabe}} 50 - 51 -{{aufgabe id="Parabel und Gerade" afb="II" zeit="30" kompetenzen="K4,K5" quelle="Torben Würth" cc="BY-SA"}} 52 -Gegeben ist die Funktionsgleichung {{formula}}f(x)=(x+2)^2-3{{/formula}} und ein zu ergänzendes Koordinatensystem. 53 -(% style="list-style: alphastyle" %) 54 -1. Zeichne den Funktionsgraphen in einem geeigneten Intervall. 55 -1. Berechne die Funktionswerte an den Stellen {{formula}}x=-3{{/formula}} und {{formula}}x=1{{/formula}}. 56 -1. Zeichne die Gerade {{formula}}g{{/formula}} durch die Punkte {{formula}}P_1(-3|-2){{/formula}} und {{formula}}P_2(1|6){{/formula}} ein. 57 -1. Berechne den Funktionsterm der Geraden {{formula}}g{{/formula}}. 58 -1. Ermittle den Bereich, in dem die Gerade über der {{formula}}x{{/formula}}-Achse verläuft. 59 -1. Bestimme den Funktionsterm einer Geraden {{formula}}h{{/formula}}, die senkrecht auf der Geraden {{formula}}g{{/formula}} steht und einen gemeinsamen Punkt mit {{formula}}f{{/formula}} und {{formula}}g{{/formula}} hat. 60 -{{/aufgabe}} 61 - 62 -{{aufgabe id="Wurzelfunktion" afb="II" zeit="20" kompetenzen="K4,K5" tags="" quelle="Torben Würth" cc="BY-SA"}} 63 -Gegeben ist die Funktionsgleichung {{formula}}f(x)=x^{\frac{2}{6}} {{/formula}}, eine zu ergänzende Wertetabelle und ein zu ergänzendes Koordinatensystem. 64 - 65 -((((% class="border" style="width:100%" %) 66 -|={{formula}}x{{/formula}}| | | | | | | | | | | | | | | | | | 67 -|={{formula}}f(x){{/formula}}|||||||||||||||||| 68 -))) 69 -(% style="list-style: alphastyle" %) 70 -1. Gib den Funktionsterm in vereinfachter Schreibweise an. 71 -1. Gib den Funktionsterm als Wurzelfunktion an. 72 -1. Zeichne die Funktion mit Hilfe einer Wertetabelle in einem geeigneten Intervall. 73 -1. Bestimme den maximalen Definitionsbereich sowie den Wertebereich. 74 -{{/aufgabe}} 75 - 76 -{{aufgabe id="Gitterpunkte" afb="III" zeit="20" kompetenzen="K2, K5" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}} 77 -Legt man **rechtwinklige Dreiecke** mit den einer waagerechten Katheten {{formula}} a {{/formula}} und senkrechten Katheten {{formula}}b{{/formula}} so auf ein quadratisches Gitter, dass alle drei Eckpunkte auf einem Gitterpunkt landen, dann befindet sich bei manchen dieser Dreiecke **kein einziger** Gitterpunkt auf der **Hypotenuse**. 78 - 79 -Schüler*in 1 behauptet: Bei einem solchen rechtwinkligen Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}}b{{/formula}} gibt es {{formula}}a + b + 1{{/formula}} Gitterpunkte auf dem Rand und {{formula}}\frac{a\cdot b}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks. 80 - 81 -Schüler*in 2 hält dagegen: Bei einem solchen rechtwinkligen Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}} b {{/formula}} gibt es {{formula}} a + b - 1 {{/formula}} Gitterpunkte auf dem Rand und {{formula}} \frac{(a-1)\cdot (b-1)}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks. 82 - 83 -Analysiere und überprüfe die vier genannten Formeln (% style="color:red" %) (und vervollständige für die beiden korrekten Formeln jeweils den Lösungsweg). 84 - 85 85 {{lehrende}} 86 -**Variante 1:** Offene Aufgabenstellung für den Unterricht/größere Klassenarbeitsaufgabe: 87 -Finde für solche Dreiecke allgemeine Formeln, mit denen sich 88 -* die Anzahl der Gitterpunkte auf dem **Rand** 89 -* die Anzahl der Gitterpunkte im **Inneren des Dreiecks in Abhängigkeit von der Länge** der beiden **Katheten** bestimmen lässt. 5 +**__Variante 1:__ Offene Aufgabenstellung für den Unterricht/größere Klassenarbeitsaufgabe:** 6 +Finden Sie für solche Dreiecke allgemeine Formeln, mit denen sich 7 +*die Anzahl der Gitterpunkte auf dem **Rand** 8 +*die Anzahl der Gitterpunkte im **Inneren des Dreiecks** 9 +**in Abhängigkeit von der Länge** der beiden **Katheten** bestimmen lässt. 90 90 //Der horizontale/vertikale Abstand der Gitterpunkte beträgt eine Längeneinheit (1 LE).// 91 91 92 -**Variante 2:** Kleinere Klassenarbeitsaufgabe, Richtigkeit der Lösung nachweisen 12 + 13 +**__Variante 2:__ Kleinere Klassenarbeitsaufgabe, Richtige Lösung finden** 14 +Schüler*in 1 behauptet: Bei einem solchen rechtwinkligen Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}}b{{/formula}} gibt es {{formula}}a + b + 1{{/formula}} Gitterpunkte auf dem Rand und {{formula}}\frac{a\cdot b}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks. 15 + 16 +Schüler*in 2 hält dagegen: Bei einem solchen rechtwinkligen Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}} a {{/formula}} gibt es {{formula}} a + b - 1 {{/formula}} Gitterpunkte auf dem Rand und {{formula}} \frac{(a-1)\cdot (b-1)}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks. 17 +Analysiere und überprüfe die vier genannten Formeln (% style="color:red" %) (und vervollständige für die beiden korrekten Formeln jeweils den Lösungsweg). 18 +(% style="color:black" %) 19 +**__Variante 3:__ Kleinere Klassenarbeitsaufgabe, Richtigkeit der Lösung nachweisen** 93 93 Jemand behauptet: Ein solches rechtwinkliges Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}}b{{/formula}} besitzt {{formula}}a + b + 1{{/formula}} Gitterpunkte auf dem Rand und {{formula}} \frac{(a-1)\cdot (b-1)}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks. 94 94 Zeige, dass diese Behauptung richtig ist. 95 95 {{/lehrende}} 96 96 {{/aufgabe}} 97 97 98 -{{aufgabe id="Verbindungsstrecken von Eckpunkten" afb="III" zeit="20" kompetenzen="K2, K5, K4" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}} 25 +{{aufgabe id="Verbindungsstrecken von Eckpunkten" afb="" zeit="" Kompetenzen="" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}} 26 + 99 99 Die Verbindungsstrecken zweier nicht benachbarter Eckpunkte eines Vielecks werden Diagonalen genannt. 100 100 29 +{{lehrende}} 30 +**__Variante 1:__ Offene Aufgabe für den Unterricht & für die Klassenarbeit** 31 +Wie viele Diagonalen hat ein n-Eck? 32 + 33 +**__Variante 2:__ Kleinere Klassenarbeitsvariante, Vergleich von Strategien, Verallgemeinerung** 101 101 Ella und Jan haben ausgehend von einem 9-Eck zwei verschiedene Wege gefunden, um die Anzahl der Diagonalen zu berechnen: 102 102 103 103 Ella: {{formula}} 6 + 6 + 5 + 4 + 3 + 2 + 1 = 27{{/formula}} 104 104 Jan: {{formula}} \frac{9 \cdot 6}{2}{{/formula}} 105 - 38 + 106 106 Wie sind Ella und Jan auf ihre Formeln gekommen? Analysiere und vergleiche die beiden Lösungsbeispiele. 107 - 40 + 108 108 Übertrage beide Formeln für das 9-Eck auf eine allgemeine Formel für das n-Eck. 109 - 110 -{{lehrende}} 111 -**Variante 1:** Offene Aufgabe für den Unterricht & für die Klassenarbeit 112 -Wie viele Diagonalen hat ein n-Eck? 113 113 {{/lehrende}} 114 -{{/aufgabe}} 115 115 116 -{{aufgabe id="Fussball" afb="III" zeit="20" kompetenzen="K2, K5" tags="problemlösen" quelle="Problemlösegruppe" cc=""}} 117 - 118 -Inmitten von wie vielen Fußbällen sitzen Franz Beckenbauer und Oliver Bierhoff hier im Borussia-Park von Mönchengladbach? 119 - 120 -Die Spielfläche wurde vor der WM 2006 zu PR-Zwecken von 320 Mitarbeitern einer großen deutschen Bank komplett mit Fußbällen belegt. 121 - 122 -1. Gib an, welche Größen du zur Lösung dieser Aufgabe benötigst. Schätze diese realistisch ab und berechne die Anzahl der Fußbälle. 123 -1. Erläutere, ob man auf derselben Fläche noch mehr Fußbälle unterbringen könnte. Wenn ja, skizziere eine mögliche Anordnung und gib möglichst genau an, wie viel Prozent mehr Fußbälle das sind. 44 +{{aufgabe id="Fussball" afb="" zeit="" Kompetenzen="" tags="problemlösen" quelle="Problemlösegruppe" cc=""}} 45 +[[image:Fussball.PNG||width="550"]] (Bildquellen:Postbank) 46 + 47 +[[image:Fußballspielfläche.PNG||width="250" style="float: left"]] 48 + Inmitten von wie vielen Fußbällen sitzen 49 + Franz Beckenbauer und Oliver Bierhoff 50 + hier im Borussia-Park von Mönchengladbach? 51 + 52 + Die Spielfläche wurde vor der WM 2006 zu 53 + PR-Zwecken von 320 Mitarbeitern einer 54 + großen deutschen Bank komplett mit 55 + Fußbällen belegt. 56 + 57 +a) Gib an, welche Größen du zur Lösung dieser Aufgabe benötigst. Schätze diese realistisch ab und berechne die Anzahl der Fußbälle. 58 + 59 +b) Erläutere, ob man auf derselben Fläche noch mehr Fußbälle unterbringen könnte. 60 +Wenn ja, skizziere eine mögliche Anordnung und gib möglichst genau an, wie viel Prozent mehr Fußbälle das sind. 124 124 {{/aufgabe}} 125 - 126 -{{matrix/}} 127 -
- Achsenkreuz.svg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.torbenwuerth - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -5.9 KB - Inhalt
-
... ... @@ -1,1 +1,0 @@ 1 -<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="914" height="737"><defs><clipPath id="pwyNrvvZqofS"><path fill="none" stroke="none" d=" M 0 0 L 914 0 L 914 737 L 0 737 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#pwyNrvvZqofS)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="914" height="737" fill-opacity="1"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 482.5 2.5 L 482.5 737.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 482.5 1.5 L 478.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 482.5 1.5 L 486.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 0.5 375.5 L 912.5 375.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 913.5 375.5 L 909.5 371.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 913.5 375.5 L 909.5 379.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 32.5 375.5 L 32.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 82.5 375.5 L 82.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 132.5 375.5 L 132.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 182.5 375.5 L 182.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 232.5 375.5 L 232.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 282.5 375.5 L 282.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 332.5 375.5 L 332.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 382.5 375.5 L 382.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 432.5 375.5 L 432.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 532.5 375.5 L 532.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 582.5 375.5 L 582.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 632.5 375.5 L 632.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 682.5 375.5 L 682.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 732.5 375.5 L 732.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 782.5 375.5 L 782.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 832.5 375.5 L 832.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 882.5 375.5 L 882.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 725.5 L 482.5 725.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 675.5 L 482.5 675.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 625.5 L 482.5 625.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 575.5 L 482.5 575.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 525.5 L 482.5 525.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 475.5 L 482.5 475.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 425.5 L 482.5 425.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 325.5 L 482.5 325.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 275.5 L 482.5 275.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 225.5 L 482.5 225.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 175.5 L 482.5 175.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 125.5 L 482.5 125.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 75.5 L 482.5 75.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 25.5 L 482.5 25.5" stroke-opacity="1" stroke-miterlimit="10"/></g></g></svg>
- Fussball.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +1.2 MB - Inhalt
- Fußballspielfläche.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.martinrathgeb - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +119.3 KB - Inhalt