Änderungen von Dokument BPE 2.1 Funktionstypen und deren Eigenschaften
Zuletzt geändert von Holger Engels am 2025/03/31 21:42
Von Version 196.1
bearbeitet von Martin Rathgeb
am 2024/10/15 13:47
am 2024/10/15 13:47
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 198.11
bearbeitet von Holger Engels
am 2024/10/15 20:38
am 2024/10/15 20:38
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. martinrathgeb1 +XWiki.holgerengels - Inhalt
-
... ... @@ -5,7 +5,7 @@ 5 5 [[Kompetenzen.K1]] [[Kompetenzen.K4]] Ich kann die Eigenschaften von Potenzfunktionen ausgehend von den Funktionsgraphen erläutern 6 6 [[Kompetenzen.K1]] Ich kann den Stetigkeitsbegriff anschaulich anhand der Graphen von Potenzfunktionen erläutern 7 7 8 -{{aufgabe id="Erkunden (Paar von Potenzfunktionen) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" zeit=" 10" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}8 +{{aufgabe id="Erkunden (Paar von Potenzfunktionen) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" zeit="7" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 9 9 (% style="list-style: alphastyle" %) 10 10 1. Ergänze für die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}} folgende Wertetabelle (wo möglich). 11 11 ((((% class="border" style="width:100%" %) ... ... @@ -21,7 +21,7 @@ 21 21 1. Beschreibe das Randverhalten der Funktionen und nenne ihre Wertemengen. 22 22 {{/aufgabe}} 23 23 24 -{{aufgabe id="Erkunden (eine Potenzfunktion) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" zeit=" 8" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}24 +{{aufgabe id="Erkunden (eine Potenzfunktion) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" zeit="9" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 25 25 Untersuche die Funktion //f// mit {{formula}}f(x)=\frac{1}{x}{{/formula}} und Definitionsbereich {{formula}}\mathbb{R}^*{{/formula}} im Hinblick auf ihr Randverhalten und ihre Wertemenge. Ergänze dafür zunächst folgende Wertetabellen (wo möglich). 26 26 27 27 (% style="list-style: alphastyle" %) ... ... @@ -51,7 +51,7 @@ 51 51 1. Beschreibe das Randverhalten der Funktion und nenne ihre Wertemenge. 52 52 {{/aufgabe}} 53 53 54 -{{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="K4,K5" zeit=" 9" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}54 +{{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="K4,K5" zeit="12" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 55 55 Gegeben sind drei Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}}. 56 56 (% style="list-style: alphastyle" %) 57 57 1. Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an. ... ... @@ -59,7 +59,7 @@ 59 59 1. Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 60 60 {{/aufgabe}} 61 61 62 -{{aufgabe id="Erkunden - Graph und Asymptoten (ungerader Parameter)" afb="I" kompetenzen="K4,K5" zeit=" 9" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}62 +{{aufgabe id="Erkunden - Graph und Asymptoten (ungerader Parameter)" afb="I" kompetenzen="K4,K5" zeit="12" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 63 63 Gegeben sind drei Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}}. 64 64 (% style="list-style: alphastyle" %) 65 65 1. Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an. ... ... @@ -69,12 +69,22 @@ 69 69 70 70 {{aufgabe id="Abbildungsketten" afb="II" kompetenzen="K2,K4,K5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 71 71 **unfertig!** 72 + 72 72 (% style="list-style: alphastyle" start="5" %) 73 -1. Sei nun {{formula}}x\in \mathbb{R}_+{{/formula}}. Bestimme {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}. 74 +1. (((Gegeben seien die Funktionen //f// und //g// mit {{formula}}f(x) = x^2{{/formula}} und {{formula}}g(x) = \sqrt{2}{{/formula}}. Fülle jeweils die Lücken aus: 75 +{{formula}}3\mapsto{\text{g}}\square\xmapsto{g}\square{{/formula}} 76 + 77 +{{formula}} 78 +\usepackage{mathtools} 79 +\begin{document} 80 + $\xmapsto{P}$ 81 +\end{document} 82 +{{/formula}} 83 +))) 74 74 1. Sei nun {{formula}}x\in \mathbb{R}{{/formula}}. Untersuche {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}. 75 75 {{/aufgabe}} 76 76 77 -{{aufgabe id="D und W" afb="I" kompetenzen="K4" zeit=" 6" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}87 +{{aufgabe id="D und W" afb="I" kompetenzen="K4" zeit="8" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 78 78 Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten: 79 79 80 80 (% style="list-style: alphastyle" %) ... ... @@ -82,7 +82,7 @@ 82 82 1. {{formula}}g(x)=\sqrt{x+2}-1{{/formula}} 83 83 {{/aufgabe}} 84 84 85 -{{aufgabe id="Symmetrie nachweisen" afb="I" kompetenzen="K1, K5" zeit=" 6" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}95 +{{aufgabe id="Symmetrie nachweisen" afb="I" kompetenzen="K1, K5" zeit="5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 86 86 Untersuche die folgenden Funktionen rechnerisch auf Symmetrie zum Ursprung und Symmetrie zur y-Achse. 87 87 88 88 (% style="list-style: alphastyle" %) ... ... @@ -92,7 +92,7 @@ 92 92 1. {{formula}}f(x)=\frac{5}{x^2}+1{{/formula}} 93 93 {{/aufgabe}} 94 94 95 -{{aufgabe id="Venn - Eigenschaften" afb="II" kompetenzen="K2, K4, K5" zeit=" 8" quelle="Holger Engels" cc="BY-SA" zeit="8" tags="problemlösen"}}105 +{{aufgabe id="Venn - Eigenschaften" afb="II" kompetenzen="K2, K4, K5" zeit="10" quelle="Holger Engels" cc="BY-SA" zeit="8" tags="problemlösen"}} 96 96 [[image:venn.svg|| width="500" style="float: left"]] 97 97 Gib für jedes Feld **A** .. **H** eine passende Funktion {{formula}}f(x)=a\cdot x^n{{/formula}} an. Sollte ein Feld nicht gefüllt werden können, begründe bitte, warum es nicht geht. 98 98 ... ... @@ -109,7 +109,7 @@ 109 109 **Zusatzaufgabe:** Finde möglichst einfache/ komplexe Lösungen. 110 110 {{/aufgabe}} 111 111 112 -{{aufgabe id="Stetigkeit - Anschaulische Einführung" afb="II" kompetenzen="K1,K6" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit=" 5"}}122 +{{aufgabe id="Stetigkeit - Anschaulische Einführung" afb="II" kompetenzen="K1,K6" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="3"}} 113 113 Sascha behauptet, die Funktion //f// mit {{formula}}f(x) = \frac{1}{x}{{/formula}} sei auf ihrem maximalen Definitionsbereich nicht stetig, weil man ihren Graphen nicht ohne Absetzen zeichnen kann. Nimm dazu Stellung! 114 114 {{/aufgabe}} 115 115 ... ... @@ -121,7 +121,7 @@ 121 121 ⭘ schließt ihn aus 122 122 {{/aufgabe}} 123 123 124 -{{aufgabe id="Umkehrung" afb="III" kompetenzen="K1, K2, K5" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit=" 5" niveau=p}}134 +{{aufgabe id="Umkehrung" afb="III" kompetenzen="K1, K2, K5" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="7" niveau="p"}} 125 125 Sascha formuliert die beiden nachfolgenden Behauptungen. Nimm dazu Stellung! 126 126 (% style="list-style: alphastyle" %) 127 127 1. Die Funktion //f// mit {{formula}}f(x) = \frac{1}{x}{{/formula}} sei auf ihrem maximalen Definitionsbereich ihre eigene Umkehrfunktion.